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ABSTRACT

Palladium(II)-catalyzed aerobic oxidative cyclization of alkenes with tethered tert-butanesulfinamides furnishes enantiopure 2,5-disubstituted
pyrrolidines, originating from readily available and easily diversified starting materials. These reactions are the first reported examples of metal-
catalyzed addition of sulfinamide nucleophiles to alkenes.

2,5-Disubstituted pyrrolidines are an important class
of heterocycles featured in numerous natural products,
pharmaceuticals, ligands for transition metals, and

organocatalysts.1 PdII-catalyzed aerobic oxidative cycliza-
tion reactions provide efficient routes to pyrrolidines
(eq 1);2,3 however, few of these methods enable stereo-
selective C�N bond formation. The first examples of
enantioselective oxidative cyclization have been reported
only recently.4�6 Here, we show that chiral γ-amino-
alkene substrates bearing a tBu-sulfinyl auxiliary undergo
efficient PdII-catalyzed aerobic oxidative cyclization
to afford enantiopure 2,5-disubstituted pyrrolidines.7
tBu-Sulfinamides have been widely used for the
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stereoselective synthesis of amines, as summarized in an
extensive recent review by Ellman;8 however, the present
reactions are the first use of sulfinamides in metal-catalyzed
nucleophilic functionalization of alkenes.9

Our strategy to prepare 2,5-disubstituted pyrrolidines is
illustrated in Scheme 1 and begins with readily available
cis-4-hexen-1-ols.10 Aerobic oxidation of the alcohol11

and condensation of the resulting aldehyde with tBu-
sulfinamide8,12 furnish the sulfinyl imine derivative 1.
Methods for stereoselective addition of nucleophiles to
chiral sulfinyl imines provide access to a variety of enan-
tiopure R-substituted sulfinamides 2.8 PdII-catalyzed
aerobic oxidative cyclization of 2 affords the desired 2,5-
disubstituted pyrrolidines.
The enantiopure R-Me-substituted sulfinamide 3 was

used as the substrate in the development of a suitable
heterocyclization catalyst (Table 1).13 Testing of catalyst
systems that have been shown previously to promote aero-
bic oxidative cyclization of γ-aminoalkene derivatives led

to mixed results (Table 1, entries 1�4).3,14 Good product
yields were obtained with PdII catalysts in which DMSO
was used as a solvent and/or ligand (entries 1 and 4),3a,14

while PdII/pyridine-based catalyst systems (entries 2
and 3)3b,c afforded low yields. Further screening of anionic
base additives, the PdII source, and solvents (Table 1, entries
5�11; Table S1) revealed that optimal results were obtained
with Pd(TFA)2 (TFA= trifluoroactate) as the PdII source,
1 equiv of LiOAc, andDMSOas the solvent. All conditions
tested led to formation of a single diastereomeric product
(>20:1 dr), affording the cis disubstituted pyrrolidine 4.
The sulfinamidegroup is readily removedupon treatmentof
4with 4MHCl,15 affording theHCl salt of the unprotected
pyrrolidine in 95% yield.16

Table 1. Optimization of a Catalyst System for Diastereoselec-
tive Oxidative Cyclizationa

entry [PdII]/additives solvent yieldc

1 Pd(OAc)2/2 equiv of NaOAc,

no 3 Å MS

DMSO 87

2 Pd(OAc)2/20 mol % pyridine toluene 38

3 Pd(TFA)2/40 mol % pyridine,

2 equiv of Na2CO3, no 3 Å MS

toluene 8

4 Pd(TFA)2/20 mol % DMSO,

1 equiv of LiOAc

THF 83

5 Pd(TFA)2/no base DMSO 6

6 Pd(TFA)2/1 equiv of NaOAc DMSO 81

7 Pd(TFA)2/1 equiv of NaOBz DMSO 79

8 Pd(TFA)2/1 equiv of LiOAc DMSO 92

9 Pd(TFA)2/1 equiv of Na2CO3 DMSO 14

10 PdCl2/1 equiv of LiOAc DMSO 81

11 Pd(OPiv)2/1 equiv of LiOAc DMSO 13

aConditions: substrate (0.08 mmol), PdII (0.008 mmol), 3 Å MS
(40mg), O2 (1 atm), solvent (0.8 mL), 50 �C, 14 h. bDiastereomeric ratio
determined by 1H NMR spectroscopy. cYield determined by 1H NMR
spectroscopy, int. std. = PhSiMe3.

Scheme 1. Stereoselective Synthesis of 2,5-Disubstituted Pyr-
rolidines
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The presence of two stereocenters in 3, one associated
with the sulfinyl group and the other R to the nitrogen
atom, raises fundamental questions concerning the origin
of stereocontrol in these reactions. The optimized catalyst
systemwas used to probe these issues (Table 2). Substrate 5,
which lacks a stereocenter adjacent to nitrogen, underwent
cyclization with 7:1 dr (68% yield, entry 1), demonstrating
that the tBu-sulfinyl group could be used as an auxiliary to
achieve stereocontrol when no other stereocenters are
present in the substrate. The influence of the R-Me group
on diastereoselectivity was evaluated by performing
the cyclization of 6, in which the tBu-sulfinyl group
was replaced with an achiral toluenesulfonyl (Ts) group.
This reaction afforded the cis-pyrrolidine product
with moderate diastereoselectivity (6:1 dr, entry 2). The

cooperative effect of the two stereocenters is evident
from the improved yield and diastereoselectivity in the

Table 2. Substrate Effects on the Diastereoselectivity of PdII-
Catalyzed Oxidative Cyclizationa

aConditions: substrate (0.07 mmol), Pd(TFA)2 (0.007 mmol), 3 Å
MS (35 mg), O2 (1 atm), DMSO-d6 (0.7 mL), 50 �C, 24 h. bYield
determined by 1H NMR spectroscopy, int. std. = PhSiMe3.

cDiaster-
eomeric ratio determined by 1H NMR spectroscopy of crude reaction
mixture.

Table 3. Stereoselective Oxidative Cyclization of Alkenes
Bearing Tethered R-Substituted tBu-Sulfinamide Nucleophilesa

aConditions: substrate (0.5 mmol), Pd(TFA)2 (0.05 mmol), 3 Å MS
(250 mg), O2 balloon, DMSO (5 mL), 50 �C, 24 h. c Isolated yield.
bDiastereomeric ratio determined by 1H NMR spectroscopy of crude
reaction mixture. dPerformed at 70 �C, 3 atm of O2.

(16) See Supporting Information for further information.
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cyclization of the parent substrate 3 (98% yield, >20:1 dr;
entry 3). The pairwise influence of the sulfur- and carbon-
based stereocenters was analyzed further by testing the
reaction of epi-3, in which the stereochemical configura-
tion R to nitrogen is inverted (entry 4). This substrate
afforded the corresponding cis-pyrrolidine16 as a single
diastereomer, butwithmoderately reducedyield relative to
the reaction of 3. This observation suggests that rotation
about the N�S bond enables the sulfinamide to act
cooperatively with either epimeric form of the substrate
to enforce highly diastereoselective C�N bond formation.
Finally, analysis of the alkene stereochemistry revealed
that a significantly lower yield and diastereoselectivity
was observed with substrate 7, bearing a trans-alkene (cf.
entries 3 and 5).17

With these results in hand, we investigated the reactivity
of a number of different substrates (Table 3). A benzyl-
substituted alkene underwent cyclization in 85% yield to
provide the stryenyl product (entry 1). Each of the other
substrates, bearing diverse functional groups in the R
position, was readily obtained by stereoselective addition
of the appropriate nucleophile to the sulfinylimine pre-
cursor (cf. Scheme 1).8,16 Oxidative cyclization of these
substrates proceeded with excellent diastereoselectivity, in
most cases affording a single detectable diastereomer
(Table 3). All of the reactions proved to be operationally
straightforward, with substrates and reagents weighed and
combined in a flask open to the air and stirred under a
balloon of O2. Substrates with relatively large R substitu-
ents, including isopropyl and aryl groups, proceeded effec-
tively, albeit with a somewhat lower yield relative to the
R-Me derivative 3 (61�74% yield, entries 2�4). Subtrates
featuring an aryl chloride (entry 4), phosphonate (entry 5),
carboxylic ester (entry 6), or acetal (entry 7) also under-
went successful cyclization. The latter functional groups
are appealing because they are readily amenable to further
functional-group manipulations to prepare more complex
molecules.
Substrate 8, which contains an R-propenyl substituent,

cyclized in good yield with increased temperature and
O2 pressure (Table 3, entry 8). Alkene metathesis of the
diene product 9 using the Grubbs II catalyst yielded the

azabicyclic tropene 10 in 82% yield (Scheme 2).16 Tropane
alkaloids have received substantial attention in recent
years due to the effect of these molecules on the central
nervous system,18 and tropene derivatives directly analo-
gous to 10 have been converted by straightforward meth-
ods to various alkaloid products.18d

In summary, we have developed catalytic conditions
that enable Wacker-type aerobic oxidative cyclization of
alkenes bearing tethered tBu-sulfinamide nucleophiles.
These reactions benefit from efficient access to the enan-
tiopure substrates and highly diastereoselective cycliza-
tion, and they enable modular, stereocontrolled synthesis
of a diverse collection of cis-2,5-disubstituted pyrrolidines.
These results highlight the prospective utility of tBu-sulfi-
namides as chiral nitrogen nucleophiles in metal-catalyzed
additions to alkenes and related electrophiles.
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Scheme 2. Synthesis of aCommonPrecursor for the Synthesis of
Tropane Alkaloids
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